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W A V E  F O R M A T I O N  I N  A F I L M  

F L O W I N G  D O W N  A N  I N C L I N E D  P L A N E  

IN T H E  P R E S E N C E  O F  P H A S E  C H A N G E  

A N D  T A N G E N T I A L  T E N S I O N  ON A F R E E  S U R F A C E  

Yu. Ya. Trifonov UDC 532.51 

It is known that  the flow of thin layers of a viscous liquid is accompanied by wave phenomena. These 
phenomena in both linear and nonlinear formulations for a free falling film has been studied in many works 
[1-5]. Wave formation in joint flows of liquid and gas has been studied much less. For the case of a horizontal 
channel, the linear stability of film flow produced by gas flow is studied in [6-8], while for the case of a vertical 
plane, in [9, 10]. The presence of a transverse mass flux (for example, in condensation or evaporation) exerts 
a strong influence on wave formation; in the absence of tangential tensions on a free surface, this influence 
was studied in [11, 12]. 

The goal of this work is to study wave formation in film flow within the framework of an approach that 
takes into account several factors: the slope angle of the flow plane, the tangential tension on a free surface, 
and the phase change (condensation or evaporation). This will allow us to determine the role of various factors 
in wave formation and to gain further insight into the mechanism of wave instability. 

1. S t a t e m e n t  of  t h e  P r o b I e m .  The flow pattern is given in Fig. 1. The fundamental state of the 
system is described by the velocity fields u0 and v0 in the liquid phase and U0 and V0 in the vapor phase 
and also by the function ho (x . )  ( z .  is a large-scale variable along the flow plane). In what follows, we are 
interested in flow stability with respect to disturbances of the free surface h = hexp[ia(z  - ct)], where c is 
the unknown complex increment of buildup or damping; cz is the real wave number (a  = 2~r/A, A is the length 
of the disturbance wave). 

Imposing the disturbance field upon the fundamental state and linearizing the original equations of 
motion, we obtain the Orr-Sommerfeld system of equations 

iaRe[(u0 - c)(fvy - a2f)  _ u0yyf] = fvvvv - 2a2fyv + cz4f, (1.1) 

u = - f y h e x p [ i a ( z  - ct)], v = i a f h e x p [ i a ( z  - ct)]; 

i~gRe~[(U0 - C)(F. ~F) - Uo~F] = F Iv ~ ~ - "  ~ ' F ,  
- -  - -  Z a g r  -4- (1.2) 

U = -Fy 'Hexp[ i c~g(X  - Ct)], V = ic~gF'Hexp[ic~g(X - Ct)] 

with the boundary conditions 

d F  
yy__0 =  L=0 = 0  , F g = ~ - d y y = o ~  

Ozh ( ~ )  _ ~(0) o" 

YY y=ho+h = - h'--o Ox 2' 

= 0, ~r (g) y=ho+ h = o "(t) , zy y=ho+ h 

-~--~ U y=ho+h ~ U y=ho+h , 

I 1 u=ho+h d J <~0> v = v v = - ( ~ 0  + h )  + - - .  
Uo~ u=ho+h u=ho+h' dt p(uo) 
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Fig. 1 

Here and below the values denoted by capital letters correspond to the liquid phase, while those denoted 
by small letters, to the gas phase. The velocities in (1.1) and (1.2) are nondimensionlized by (u0) and Ur162 
((u0) is the velocity averaged over the liquid thickness, Uco is the velocity in the vapor core of the flow). The 
scale of thickness and length in (1.1) is the film thickness h0, and in (1.2), the boundary-layer thickness 60; 
Re = uoho/u and Reg = U~6o/ug are Reynolds numbers (u and ug are the kinematic viscosities of the liquid 

-(g) -(g) a(x~, and o "(1) and the vapor); a is the coefficient of surface tension; ~xu, uuu, uy are the components of the 
tension tensor in the vapor and the liquid [czu = #(Ou/Oy + Ov/Oz), cyy = - p  + 21~(Ov/Oy), kt is the dynamic 

viscosity in the liquid and the vapor, p is the pressure]; p is the liquid density; J = -(A/r)OT/Oy y=ho+h is 

the transverse mass flux; A is the thermal diffusivity; r is the heat of phase change. 
To Eqs. (1.1) and (1.2) the equation for disturbance of the temperature field should be added. Here 

we restrict ourselves to the case of long-wave disturbances and use an approximation a/27r = ho/A << 
min {1, 1/(Re Pr)}, (Pr is the Prandtl number for the liquid), which allows one to consider the temperature 
field "quasistationary" [12], i.e., T = Tw + ( Ts - T~)y / ( ho + h(x, t ) ), where Ts is the temperature of the vapor 
phase and Tw is the wall temperature, A T  = Ts - T~. 

Performing expansion in the neighborhood of an undisturbed surface and using the dimensionless form, 
we bring the boundary conditions to the form 

dF I f , ,  a2 f df = Flu=oo = dY = 0, + 0, f,y=o = ~yy ~=0 u=l - Y=O 
2ia df [ = -a2T  + (IIlY=0 - G*), --P~[y=l q--~-e ~yy y=l 

(uo)ho df dUo ~ dF duo 
d--Ylr=o ~ r=o/ U~6 ( -  ~[y=~ +--"g. -d-Y- r=0/ = ( -  + . (1.3) 

Uoo6 dy y=l,] dY Y=O) ' 

dho 1 
iaf[y=l + --~-z ~yy y=l - dy u=l+  RePrKu  ' 

where 

+ 

i a2f  ~t K =  ;-~ ( u~176 "~ 2 h~ 1 ~ y=~ (~,o =~ c ) A  ~=~ - ~o~f =~ + -d-~ ( f ~  - 
p \ -~)  6-Re0; = - ~Jly=l  

(the expression for :~ follows from the original linearized equations); 

2lag dF I i 
H y = 6 =  KReg[ -  Pg + Re----g d--Y].Y=0; fig = ( U ~  U~ a - ~ a  (FYYY-a~FY);  

g* cos ~ �9 h0 
T = o / ( p ( ~ 0 / ~ h 0 ) ;  9 '  = 9(1-pg/p); a = (uo) ~ , 
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d2Vo 2 02vo y=l; Pr = u/a ;  Ku = r lCpAT .  
G* = G - 2K ~ Y=0 -t- Re Oy 2 

For most cases that are interesting from a practical point of view, #g//z << 1, (uo)/Uoo << 1, and 
ho/5 << 1. The Orr-Sommerfeld problem for a vapor phase in this case is separated from the problem for 
liquid [6, 7] and is solved under the boundary conditions 

F y=oo dF dF  dUo i dVo 
= d Y  y=oo = 0 '  -d-y{y=o = d y  ]y=o ' F r=o - ot-g " ~  y=o" 

2. So lut ion  of  the  O r r - S o m m e r f e l d  E q u a t i o n  in a Liquid.  To solve the Orr-Sommerfeld equation 
in a liquid subject to the boundary conditions, we use the method of [1] and represent the solution as 

o o  

f = ~_ ,Any  n. 
n=2 

Substituting the general form of the stationary solution for problems of film flow uo(y) = 2y +,2(2y/3 - 
y2) into (1.1), we obtain the recursive relation 

n(n - 1)(n - 2)(n - 3)A~ = (n - 2)(n - 3)ffAn-2 + (n - 3)(n - 4)~'A,,-z 

+ (n - 4)(n - 5)wAn-4 - -  (x2[FAn-4 -I- {A, , -5  + if)An-61, 

l~  = 2 o r  2 - -  ia  Re c, ~ = 2iaRe(1 + ~/3), t~ = - i a R e  ft, F = a 2 - iaRe  c - 2i f tRe/a.  

In what follows, we restrict ourselves to the case of a 2 << 1 and a r e  < 1, and neglecting the terms 
O(ctRe) and O(a2), we find 

f = A2(y 2 + i~y4/12 + {yS/60) + A3(y 3 + ~y5/20 + {y6/60 + t~yT/210). (2.1) 

After substitution of (2.1) into the boundary conditions (1.3), we have a system of three equations for 
A2, A3, and c: 

2iot2A2 - 6iA3 = -ot3ReT + aRe(I] Y=O - G*), 

A212 + iaRe(2/3 + 2fi/9 - c)] + A316 + iaRe(1 + 2a/15 - c)] = - a c E * ,  
(2.2) 

A211 + iaRe(1/30 + ,2/90 - c/12) - ( i / a ) d h o / d x .  (2 + i aRe( l /6  + fi/18 - c/3))] 

+ a3[1 + iaRe(1/30 + 2a/315 - c/20) - ( i / a ) d h o l d z .  (3 + iaRe( l /5  + a/30 - #4))1 

= 2 - Cz/3 - c + (i /a)[Ovo/ay u=l - l / (Re  Pr Ku)]. 

Solving the system of equations (2.2), with the accuracy specified above, we obtain a quadratic equation 
for the complex increment of buildup or damping: 

ReZ*[1 + iaRe( l /30 + a/9o - c/12) - 2( i l~ )dholdz  l 

+ [2 - Cz/3 - c + (i/a)(OvolOY y=l - -  l/(R.e Pr Ku))][2 + / a R e ( 2 / 3  + 25/9 - c)] 

= i [ - a a R e T  + ~Re(rl r=0 - G*)][-2/3 + 2(i /~)dho/dz] .  (2.3) 

For further simplification and analysis of Eq. (2.3), it is necessary to have expressions for the 
components of the normal II and tangential ~* tensions on the side of the vapor phase. 

3. M e t h o d  of  SolviinYg~he O r r - S o m m e r f e l d  E q u a t i o n  in t he  Vapor  Phase .  The disturbance 
field in the vapor phase is divided into three regions in the same way as in the problem [6] of gas flow along 
a wavy wall: a) a "viscous subtayer" region with thickness 5f, where the viscosity forces predominate; b) a 
boundary layer region with thickness 50, where the velocity profile pattern Uo(y) is significant; and c) the flow 
core, where Uo(y) =cons t .  
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The general solution to Eq. (1.2) is represented as a superposition of a "viscous" and "nonviscous" 
solutions subject to the boundary conditions. 

We assume that  6f << 60 and in the viscous sublayer the velocity profile is linear. The  critical layer 
[U0(y,) = G] is assumed to lie within the viscous sublayer and this is true if U~(0)~ l >> G. The  value of U 
for the problem in the vapor phase is assumed to be zero. In this case, the viscous solution is writ ten in the 
form [13] 

T/ t 

F~ = f d,/J~ . . , / ~ . , . . , ,  ,~ ,  de' ,  ,7 = < ,~ ,r te#~(O)) ' /~r  (3.1) 
O0 0 0  

. ( 1 )  ~]/3 is a Hankel function). Solution (3.1) satisfies the damping condition at large Y. 

Outside of the viscous layer, taking into account that  agl~eg >> 1, we have U0(Y)(4yy  - a294) - 
Uoyy4 = 0 for determination of the "nonviscous" solution. 

In the flow core, 4 = Cexp[-exgY], and, to solve the problem in the boundary layer, we use the 
following approximation of the velocity profile [6]: 

sin(U~(0)Y), Y ~< ~r/(2U~(0)), 
Vo(Y) 

1, Y >>. ~/(2u~(o)). 
The velocity profile in the vapor phase can be more properly taken into account only in considering 

a particular problem and, as shown in [6], this leads to the emergence of small correction factors in the 

corresponding formulas for E* and H[y=o. 
Sewing together the solutions in the boundary layer and in the flow core and making use of the boundary 

conditions at the interface, we obtain a system of equations for the quantities B and M: 
2 4 = B[cos(LY) + (A/B)  sin(LY)], Y ~< ~r/(2U~(0)), L 2 = (U~(0)) 2 - ag, 

(3.2) 

A 1 - - ~ c o t  t dUo[ 4(0) + MFv(O) i dVo 
- =  ' - 

B cot L + a_...~g C~g dY  Y=O' 4'(0) + MF~v(O) = 
L 

The given system differs from a similar system in [6], where the problem of gas flow along a weakly sinuous 
wall was considered, in the nonzero right side of the penult imate equation, which is due to the transverse 
mass flux. 

After solving Eqs. (3.2), it is easy to find expressions for the tension components: 

F", (B ~ dVo "02U~ O2V~ ~ _ ! (  ~  0~~ ~1 
o ,  § 

Uto(O) i F~ dVo I 
c~g Fv ,l=o'd-Y W=o (3.3) 

dUo , B = L F~v(O) 
- IIIy=o = KRegB-~-~- y=o A 

B F~(O) 

The ranges of validity of all the above assumptions are analyzed in detail in [6] and remain true 
for our case. In the deduction of (3.3) and in what follows, we take into account that  F~v(O)/Fv(O) = 
-1.288rnexp[~ri/6], m = (agRegg~(o)) 1/3, Fff(O)/Fv(O) = 1.372m 2 exp[Tri/3], Fff'(O)/Fv(O) = - ira 3, as is 
easy to obtain from (3.1), using the integral representation of the Hankel function and changing the integration 
order. 

Expressions (3.3) are still rather complex for further analysis. Further simplification is achieved with 
the supplementary (and true for most cases of practical interest) assumption [6] that  ag << U~(0), which is 
equivalent to the condition a J ( C f R e )  << 1 (Cf is the friction coefficient for vapor). 
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In this case, the expression for B takes the form 

1 + 1.288 agU-~(0) dY Y=O exp 
B -  C~g 

U;(0) 1 + 1.288m (U;(0))----------- ~ exp 

Let us analyze the order of quantities that  enter in the denominator and numerator of this relation: 

m~g 2 a4/3 /~ 2 1 

(U~(0)) 2 - C/" Re2/3 (2 - 40`/3) 2/3 << 1, /3 = (pg/p)l/Z(Ug/U)2/3 << 1, a << 1, 

m dV0 Y=0 1 00` (aRe)l/3 1 (pg ~ 2/3 (Ug '~ 1/.3 00` 1 
ctgU~(O) dY = 30~ O x  (2 - 40./3)2/3 ,,-p-/ \"u-,, << 1, are << 1, aS "~ ~ ''< 1. 

Here a and Re correspond to the liquid film and use is made of Of = 2vgU~(O)/U2~, tzgU'd(O) = 
~duod/dyly=h o = g I u 0 ) ( 2 -  40`/3)/ho, OVo/OY = -aUo/OX, U0[y=0 = (uo)uly=l/U~ (quantities with 

subscript d are dimensional). With allowance for these estimates, the formula for B has the form 

B -  ag 
U (0) " 

Estimating similarly the order of the quantities contained in the expression for E*Iy=0, we obtain the 
final formulas for the tension components with the accuracy specified above: 

Hy=o  2a ( 2 - 4 ~  
- CfR.e --3)' (3.4) 

~*iY=0 -- ~ R--~7- 3 , 3 /  1.372exp [3]-t- K~-~-~ --t- ~ - - ' ~ j  Y=O Re\ay 2q- tgxtgyJly=l o 

4. R e s u l t s .  Using Eqs. (2.3) and (3.4) and representing c = c,+i 7 we find expressions for the increment 
of buildup (damping) and for c~ with the specified accuracy: 

a R e r l 6  / 0 '̀~ 2 + E /  40` dho 2 [Ovo, 1 ) ]  
7=---~-[-1-50`tl+-3)+3(Hy=o-G-a2T) a Y=0 a 2 R e d x  ~-~--~e[k-'~'-Y y=l ~ ' 

c ~ = 2 +  0`, Fly=0 

The disturbances with 7 / <  0 are damping, while those with 7i > 0 are growing. From (4.1), it follows 
that  gravity, surface tension, and positive transverse mass flux (in the case of condensation) always have a 
stabilizing effect (negative contribution to the expression for 7/)- The vapor flow, on the one hand, decreases 
the average thickness of the film, leads to a more intense transverse mass flux, and, in the case of condensation, 
stabilizes the film. On the other hand, the value of Ei is always positive and has a destabilizing effect. Thus, 
we can speak about the overall effect of the vapor flow only after considering a particular problem. 

Let us now analyze the various limiting cases. 
(1) Liquid Film Flowing Down Freely under Gravity. In this case, dho/dx = H Y=0 = Ei Y=0 = 0, and 

the stationary solution has the form 

u~ h2[ yh-O 2h20Y2] R e -  qo _ g* sin(qa)h~ 
' u 3u 2 ' 

whence, using the definitions of the dimensionless quantities, we obtain 0  ̀ = 3/2, G = 3 cot(~)/Re,  T = 
(3Fi/sin(qa))l/3/R.e 5/3, Fi = (o' /p)3/g*b '4. 

From (4.1) follows the equation of a neutral curve (3' = O) G + a2T = 18/5, which does not have 
solutions under the condition G > 18/5. This leads to the well-known stability criterion for film flow on an 
inclined plane [1]: cot(~p) > 6Re/5. 
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(2) Liquid Film Flowing Down Freely under Gravity in the Presence of a Transverse Mass Flux. In 
this case II[y=0 = Ei [y=  ~ = 0. The stationary solution is similar to that in item (I), and in addition, 

dho _ 1 Ovo = 1 
dz 3Re Pr Ku '  Oy v=l Re Pr Ku " 

From (4.1), the following equation is obtained for the neutral curve: 

a 4 R e T + a 2 R e  G - ~  + R e P r K u - O '  

where G = 3cot(~)/Re and T = (3Fi/sin(~,))l/3/Rd/3. 
The critical Reynolds number at which wave formation starts is determined from the equation 

V 3Fi  1/3 i]0.5 
Rec = gcot(~) + 3(Rec)S/5 [ \ s i n (~ ) ]  P r K u  (4.2) 

and for ~ = ~r/2 exactly corresponds to the one found in [11]. For the other values of the angle ~, the critical 
number of wave formation should be determined numerically from Eq. (4.2), which differs from the conclusions 
of [11], where a simplified expression Rer = 5cot(~)/6 for ~ ~ ~r/2 is obtained. 

(3) Liquid Film Flowing Down under Gravity in the Presense of Tangential Tension on a Free Surface. 
In this case, dho/dx = Ovo/Oy = O, and the stationary solution takes the form 

uo(y) = g* sin(~o)h2[Y Y~h2] 1 2 
# 

As a system of basic parameters, it is convenient to select the slope angle of the flow plane ~, Re* = 
g*h~/(3u 2) and the velocity in the gas flow core Uoo. Then, the dimensionless criterion in (4.1) is expressed 
in the form 

Re = Re*sin(~) + r;(Re*) 2/3, r~ = 32/3pgU2Cl/(4p(ug*)2/3), fi = 1.5(1 - T.), 

r, = 1/(1 + sin@)Re*I/a/~';), a = 3cos(~,)(r,/~';)~/(Re*) ~/3, T = (3Fi)~/3(~' , /~ ' ;)2/Re *. 

From Eq. (4.1) follows the system of equations for the critical number of wave formation Re~ (7 = 
0, 0 7 / 0 ~  = 0): 

12 rIrly=01 + G - 2a2T - 8 u (  1 + 3 )  = 0, II,.[y=o-2aZT+--~ly=o=O.Zi 

Solving this system, after a number of conversions we obtain a transcendental equation for Re*: 

(~_.e~) I/3 K 
- -  co2/3(w + ~1)1/3( -3w + ~1), 

~1 = [w2 + cos(cP) - 2sin(c,o)(Re*c)2/3(K3Klw+ 3 sin(cp)(Re:)X/3)] 1/2, (4.3) 

Pg rr2 K1 = 64(2/3)~ ~/6, _r,: = ( 6C i ) X / 3 / ( 4~ ) ,  ~ = ~ ~oo v ~g , ,  /~ = 3051.372Z/2. 

At ~o = 0, Eq. (4.3) goes over into the equation of work [7]. 
The results of numerical analysis of Eq. (4.3) for the air-water system are given in Figs. 2 and 3. Note 

that the friction coefficient C I should be determined by solution of the stationary problem. Experiments [7], 
that studied the case of a horizontal channel (~o = 0) in an air-water system has shown that the value of C I 
differs only slightly from this value for a dry channel and can be calculated from the corresponding formulas, 
depending on the geometric parameters of the channel. In Figs. 2 and 3, curves 1-4 correspond to C I = 3.10 .3 
and curves 1'-4', to C I = 6 .10  .3 (the numerical values of C I are taken from [7]). 

From an additional analysis of Eq. (4.1), after reducing the system of dimensionless quantities to our 
case, it is easy to deduce that always 07/&o > 0. Hence it follows that the results of calculation of Eq. (4.3) 
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Fig. 2 Fig. 3 

are easy to represent as a set of the curves we(Re*) for different ~, and in the range of w > we we have 
rising disturbances, i.e., instability. In Figs. 2 and 3, curves 1, 1'-4, and 4' are calculated at ~ = 0, 5, 10, and 
30 ~ For T r 0, the curves in Fig. 2 bound the corresponding stability region in the plane (w, Re*), whose 
size decreases rapidly with increasing slope angle. The extreme right boundary point of the stability region 
corresponds to the critical number of wave formation in a film falling down freely (bcot(T)/(6 sin(~)). 

The results are conveniently illustrated by the numerical values of the velocity: Uoo = 1.71, 2.42, 2.96, 
3.42, 3.83, and 4.19 m/sec for w = 0.025, 0.05, 0.075, 0.1, 0.125, and 0.15. 

Figure 3 shows wave numbers for disturbances at the boundary of the stability region. For an air-water 
system, the film number is rather large (Fi ~ 1011) and the main assumption of the present work (long waves) 
holds well, as follows from Fig. 3. 

(4) W a v e  Format ion  in M o v i n g - V a p o r  Condensat ion  along a Vertical Wa11. In this case, the stationary 
solution is determined by the system of equations [14] 

UO(Y) -- g'h2 [ h~ ~z~ _I_ Tgy y2 ] 1 [ho d ] g* [h~ dho] 1 
' u ---~z(ush~ + ~ -  "-~--xJ- PrKU'  

d -  s) (2Vo  + 3 s)] 15 1  s-g*  o12  1 
d--~t u ~ - ~ ~ v  + 2 L ho P rKu  ho j = 0 ,  (4.4) 

~'g---- ~O us--  

Here us is the velocity on the free film surface; R 2 = I~pl(#gpg).  
Following [14] and sewing together the asymptotic solutions of Eqs. (4.4) at small and large z, we 

represent the solution as 

- '7 ~s = 4 1 + '7 = ( g z / U ~ ) P r K u / x  4, 
h~ (1 + ~7/4)II 2' ' (4.5) 

X = 0.45(1.2 + P r K u / R )  1/3. fl 2 = (gh201uUoo)PrKu /x  2, fts = (us/Uoo )Pr Ku/x  2, 

The system of basic parameters and the expressions for Re, G, T, and fi are similar to those in item (3) 
and after transformation the fundamental equation (4.1) for stability takes the form 

4 ~ + 18 +  o2/2 
7 -- 3Re, l/3 ~2 + 6~s 6Re, l/3 -~- ]~2 

21133"i13~13o.,213(PrKu)213 (__pg ~ ,13 p,.e*'l 9 Z 
)(.413 /~1 \ p /  (~(,~, _ ~02/2))1/3 a l  ]j, 

+ 

Z -  54(3Fi)1/3 [1 + l  dho 2 
Re*2/3prKu L 6 ~ J 
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R e  

where ~t0, Us, and dTto/dq can be implicitly expressed in terms of Re*, w, and PrKu by means of formulas 
(4.5); al  = r z/2. 

We can obtain a system of equations for the critical number of wave formation Re* (7 = 0, 07/Oa = O) 
and solve it numerically. The results for the condensation of moving Freon-21 vapor (in the curve of saturation 
at Ts = 60~ are given in Fig. 4 and 5. Curves 1-6 correspond to temperature differences of 5, 10, 15, 20, 30, 
and 35~ The regions of instability lie to the right of the curves in Fig. 4, i.e., at such values of the parameters 
•, Re, and AT, rising disturbances take place. Here we note that Re in Figs. 4 and 5 is constructed for the 
flow rate. The extreme right boundary point of the stability region corresponds to the critical number of the 
wave formation of a film flowing down freely in the presence of a phase change [5[(3Fi)1/3/PrKu]~ [see 
item (2)]. 

To illustrate the results, we give numerical velocity values: U~ = 0.52, 0.73, 0.9, 1.04, 1.47, and 
1.80 m/sec for w = 0.25, 0.5, 0.75, 1.0, 2.0, and 3.0. 

In Fig. 5, the wave numbers for disturbances at the boundary of the stability region are presented. The 
notation of the curves is as in Fig. 4. For Freon-21, (6(3Fi)1/3) 1/2 ~ 57.8, and the main assumption of the 
present work (long waves) holds well. As follows from the results, wave formation starts at small Reynolds 
numbers, despite the stabilizing effect of the transverse mass flux. In [15], experimental data were obtained 
on the integral heat-release coefficient an in the condensation of the moving vapor in a wide range of vapor 
temperatures, temperature differences, and flow rates in the condensate film [points I in Fig. 6 are taken from 
[15], and generalize the experimental data at (Xe,)4Fr/(PrKu) = 0.1 (-t-20 %), ah0 = 4)t(g/3v2)U3/(3ReU3) 
is the integral heat-release coefficient during condensation of immovable vapor]. Points II in Fig. 6 are taken 
from [16], and generalize the experimental data on condensation of immovable vapor. The deviation of points 
II from the curve ah/ahO = 1 in the case of condensation of immovable vapor indicates the presence of waves, 
beginning from the smallest Reynolds numbers for the condensate film. For the moving vapor, we were unable 

L 
to obtain an explicit theoretical relation between the integral heat-release coefficient (ah = (1/L) f qdx /AT = 

0 
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L 
-(,VL)fdx/ho) and the flow rate in the condensate film. Sewing together the asymptotic relations for this 

0 
coefficient at small and large x, we obtain 

e_& = 3'/3[1 + (ae3/4RelY)S/3] ~/s ( ug ,~2/3 /,pr Ku,~2 
a0 (ae3/4Re)2/3 , ae= \ U ~ /  \ X2 / . (4.6) 

Formula (4.6) describes well the corresponding numerical calculation using Eq. (4.5) (accuracy of ~< 0.5% in a 
wide range of parameters). Note that data on heat release should be well generalized in the variables (ah/ao, 
ae3/4Re), which can be useful for data processing. Curves 1-3 in Fig. 6 correspond to calculations using Eqs. 
(4.6) for Freon-21 at AT = 1, 5, and 10~ and the vapor velocity Uoo was calculated from the experimental 
conditions (points I) (X~z)4Fr/(PrKu) = 0.1. As follows from Fig. 6, the experimental curve begins to deviate 
from the theoretical curve for the smallest Reynolds numbers, which is obviously indicative of the presence of 
waves and is in agreement with the results on stability obtained in this work. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 95-01-00879a). 

R E F E R E N C E S  

. 

2. 

3. 

4. 

5. 

6. 
7. 
8. 

9. 

10. 

11. 

12. 

13. 
14. 

15. 

16. 

T. B. Benjamin, "Wave formation in laminar flow down an inclined plane," J. Fluid Mech., 2, 554-574 
(1957). 
L. P. Kholpanov and V. Ya. Shkadov, Hydrodynamics and Heat and Mass Exchange with an Interface 
[in Russian], Nauka, Moscow (1990). 
S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films [in Russian], 
Nauka (Siberian Publishing Company), Novosibirsk (1992). 
Yu. Ya. Trifonov and O. Yu. 's "Nonlinear waves on the surface of a falling liquid film. 
Part 1. Waves of the first family and their stability," J. Fluid Mech., 229, 531-553 (1991). 
H. C. Chang, E. A. Demekhin, and D. I. Kopelevich, "Nonlinear evolution of waves on a vertically 
falling film," J. Fluid Mech., 250, 433-480 (1993). 
T. B. Benjamin, "Shearing flow over a wavy boundary," J. Fluid Mech., 6, 161-205 (1959). 
A. D. D. Craic, "Wind-generated waves in liquid films," J. Fluid Mech., 26,369-392 (1966). 
L. S. Cohen and T. J. Hanratty, "Effect of waves at a gas-liquid interface on a turbulent air flow," 
J. Fluid Mech., 31,467-469 (1968). 
V. V. Guguchkin, E. A. Demekhin, G. N. Kalugin, et al., "Wave motion of liquid films flowing 
concurrently with a gas flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4, 174-177 (1975). 
E. A. Demekhin, G. Yu. Tokarev, and V. Yu. Shkadov, "Instability and nonlinear waves in a vertical 
liquid film flowing countercurrent to a turbulent gas flow," Teor. Osn. Khim. Tekhnol., 23, No. 1, 
64-70 (1989). 
B. Spindler, "Linear stability of liquid films with interfacial phase change," Int. J. Heat Mass Transfer, 
25, No. 2, 161-172 (1982). 
Yu. Ya. Trifonov, "Effect of finite-amplitude waves on the evaporation of a liquid film flowing down 
a vertical wall," Prikl. Mekh. Tekh. Fiz., 34, No. 6, 64-72 (1993). 
G. Schlichting, Boundary Layer Theory [Russian translation], Nauka, Moscow (1969). 
T. Fujii and H. Uehara, "Laminar filmwise condensation on a vertical surface," Int. J. Heat Mass 
Transfer, 15, No. 2, 217-233 (1972). 
I. I. Gogonin, A. R. Dorokhov, and V. I. Sosunov, "Heat exchange in the filmwise condensation of 
a moving vapor," Preprint No. 66-80, Inst. Therm. Physics, Sib. Div., Russian Acad. of Sciences, 
Novosibirsk (1980). 
I. I. Gogonin, A. R. Dorokhov, and V. I. Sosunov, "Heat exchange in the filmwise condensation of an 
immovable vapor," Preprint No. 48-80, Inst. Therm. Physics, Sib. Div., Russian Acad. of Sciences, 
Novosibirsk (1980). 

249 


